Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
MMWR Morb Mortal Wkly Rep ; 72(21): 579-588, 2023 May 26.
Article in English | MEDLINE | ID: covidwho-20238754

ABSTRACT

On September 1, 2022, CDC's Advisory Committee on Immunization Practices (ACIP) recommended a single bivalent mRNA COVID-19 booster dose for persons aged ≥12 years who had completed at least a monovalent primary series. Early vaccine effectiveness (VE) estimates among adults aged ≥18 years showed receipt of a bivalent booster dose provided additional protection against COVID-19-associated emergency department and urgent care visits and hospitalizations compared with that in persons who had received only monovalent vaccine doses (1); however, insufficient time had elapsed since bivalent vaccine authorization to assess the durability of this protection. The VISION Network* assessed VE against COVID-19-associated hospitalizations by time since bivalent vaccine receipt during September 13, 2022-April 21, 2023, among adults aged ≥18 years with and without immunocompromising conditions. During the first 7-59 days after vaccination, compared with no vaccination, VE for receipt of a bivalent vaccine dose among adults aged ≥18 years was 62% (95% CI = 57%-67%) among adults without immunocompromising conditions and 28% (95% CI = 10%-42%) among adults with immunocompromising conditions. Among adults without immunocompromising conditions, VE declined to 24% (95% CI = 12%-33%) among those aged ≥18 years by 120-179 days after vaccination. VE was generally lower for adults with immunocompromising conditions. A bivalent booster dose provided the highest protection, and protection was sustained through at least 179 days against critical outcomes, including intensive care unit (ICU) admission or in-hospital death. These data support updated recommendations allowing additional optional bivalent COVID-19 vaccine doses for certain high-risk populations. All eligible persons should stay up to date with recommended COVID-19 vaccines.


Subject(s)
COVID-19 , Critical Illness , Hospitalization , Adolescent , Adult , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Hospital Mortality , mRNA Vaccines , Vaccines, Combined
2.
Vaccine ; 2023.
Article in English | ScienceDirect | ID: covidwho-2322937

ABSTRACT

Background Immunocompromised (IC) persons are at increased risk for severe COVID-19 outcomes and are less protected by 1-2 COVID-19 vaccine doses than are immunocompetent (non-IC) persons. We compared vaccine effectiveness (VE) against medically attended COVID-19 of 2-3 mRNA and 1-2 viral-vector vaccine doses between IC and non-IC adults. Methods Using a test-negative design among eight VISION Network sites, VE against laboratory-confirmed COVID-19–associated emergency department (ED) or urgent care (UC) events and hospitalizations from 26 August-25 December 2021 was estimated separately among IC and non-IC adults and among specific IC condition subgroups. Vaccination status was defined using number and timing of doses. VE for each status (versus unvaccinated) was adjusted for age, geography, time, prior positive test result, and local SARS-CoV-2 circulation. Results We analyzed 8,848 ED/UC events and 18,843 hospitalizations among IC patients and 200,071 ED/UC events and 70,882 hospitalizations among non-IC patients. Among IC patients, 3-dose mRNA VE against ED/UC (73% [95% CI: 64-80]) and hospitalization (81% [95% CI: 76-86]) was lower than that among non-IC patients (ED/UC: 94% [95% CI: 93-94];hospitalization: 96% [95% CI: 95-97]). Similar patterns were observed for viral-vector vaccines. Transplant recipients had lower VE than other IC subgroups. Conclusions During B.1.617.2 (Delta) variant predominance, IC adults received moderate protection against COVID-19–associated medical events from three mRNA doses, or one viral-vector dose plus a second dose of any product. However, protection was lower in IC versus non-IC patients, especially among transplant recipients, underscoring the need for additional protection among IC adults.

3.
Pediatrics ; 151(5)2023 05 01.
Article in English | MEDLINE | ID: covidwho-2297976

ABSTRACT

OBJECTIVES: We assessed BNT162b2 vaccine effectiveness (VE) against mild to moderate and severe coronavirus disease 2019 (COVID-19) in children and adolescents through the Omicron BA.4/BA.5 period. METHODS: Using VISION Network records from April 2021 to September 2022, we conducted a test-negative, case-control study assessing VE against COVID-19-associated emergency department/urgent care (ED/UC) encounters and hospitalizations using logistic regression, conditioned on month and site, adjusted for covariates. RESULTS: We compared 9800 ED/UC cases with 70 232 controls, and 305 hospitalized cases with 2612 controls. During Delta, 2-dose VE against ED/UC encounters at 12 to 15 years was initially 93% (95% confidence interval 89 to 95), waning to 77% (69% to 84%) after ≥150 days. At ages 16 to 17, VE was initially 93% (86% to 97%), waning to 72% (63% to 79%) after ≥150 days. During Omicron, VE at ages 12 to 15 was initially 64% (44% to 77%), waning to 13% (3% to 23%) after ≥150 days; at ages 16 to 17 VE was 31% (10% to 47%) during days 60 to 149, waning to 7% (-8 to 20%) after 150 days. A monovalent booster increased VE to 54% (40% to 65%) at ages 12 to 15 and 46% (30% to 58%) at ages 16 to 17. At ages 5 to 11, 2-dose VE was 49% (33% to 61%) initially and 41% (29% to 51%) after 150 days. During Delta, VE against hospitalizations at ages 12 to 17 was high (>97%), and at ages 16 to 17 remained 98% (73% to 100%) beyond 150 days; during Omicron, hospitalizations were too infrequent to precisely estimate VE. CONCLUSIONS: BNT162b2 protected children and adolescents against mild to moderate and severe COVID-19. VE was lower during Omicron predominance including BA.4/BA.5, waned after dose 2 but increased after a monovalent booster. Children and adolescents should receive all recommended COVID-19 vaccinations.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , Adolescent , Child , Child, Preschool , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Vaccination
4.
EClinicalMedicine ; 58: 101932, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2305366

ABSTRACT

Background: Adverse events of special interest (AESIs) were pre-specified to be monitored for the COVID-19 vaccines. Some AESIs are not only associated with the vaccines, but with COVID-19. Our aim was to characterise the incidence rates of AESIs following SARS-CoV-2 infection in patients and compare these to historical rates in the general population. Methods: A multi-national cohort study with data from primary care, electronic health records, and insurance claims mapped to a common data model. This study's evidence was collected between Jan 1, 2017 and the conclusion of each database (which ranged from Jul 2020 to May 2022). The 16 pre-specified prevalent AESIs were: acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, deep vein thrombosis, disseminated intravascular coagulation, encephalomyelitis, Guillain- Barré syndrome, haemorrhagic stroke, non-haemorrhagic stroke, immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, transverse myelitis, and thrombosis with thrombocytopenia. Age-sex standardised incidence rate ratios (SIR) were estimated to compare post-COVID-19 to pre-pandemic rates in each of the databases. Findings: Substantial heterogeneity by age was seen for AESI rates, with some clearly increasing with age but others following the opposite trend. Similarly, differences were also observed across databases for same health outcome and age-sex strata. All studied AESIs appeared consistently more common in the post-COVID-19 compared to the historical cohorts, with related meta-analytic SIRs ranging from 1.32 (1.05 to 1.66) for narcolepsy to 11.70 (10.10 to 13.70) for pulmonary embolism. Interpretation: Our findings suggest all AESIs are more common after COVID-19 than in the general population. Thromboembolic events were particularly common, and over 10-fold more so. More research is needed to contextualise post-COVID-19 complications in the longer term. Funding: None.

5.
J Infect Dis ; 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2294187

ABSTRACT

BACKGROUND: We assessed COVID-19 vaccination impact on illness severity among adults hospitalized with COVID-19 August 2021-March 2022. METHODS: We evaluated differences in intensive care unit (ICU) admission, in-hospital death, and length of stay among vaccinated (2 or 3 mRNA vaccine doses) versus unvaccinated patients aged ≥18 years hospitalized for ≥24 hours with COVID-19-like illness (CLI) and positive SARS-CoV-2 molecular testing. We calculated odds ratios for ICU admission and death and subdistribution hazard ratios (SHR) for time to hospital discharge adjusted for age, geographic region, calendar time, and local virus circulation. RESULTS: We included 27,149 SARS-CoV-2 positive hospitalizations. During both Delta and Omicron-predominant periods, protection against ICU admission was strongest among 3-dose vaccinees compared with unvaccinated patients (Delta OR [CI]: 0.52 [0.28-0.96]); Omicron OR [CI]: 0.69 [0.54-0.87]). During both periods, risk of in-hospital of death was lower among vaccinated compared with unvaccinated but ORs were overlapping; during Omicron, lowest among 3-dose vaccinees (OR [CI] 0.39 [0.28-0.54]). We observed SHR >1 across all vaccination strata in both periods indicating faster discharge for vaccinated patients. CONCLUSIONS: COVID-19 vaccination was associated with lower rates of ICU admission and in-hospital death in both Delta and Omicron periods compared with being unvaccinated.

6.
JAMA Netw Open ; 6(3): e232598, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2269196

ABSTRACT

Importance: Recent SARS-CoV-2 Omicron variant sublineages, including BA.4 and BA.5, may be associated with greater immune evasion and less protection against COVID-19 after vaccination. Objectives: To evaluate the estimated vaccine effectiveness (VE) of 2, 3, or 4 doses of COVID-19 mRNA vaccination among immunocompetent adults during a period of BA.4 or BA.5 predominant circulation; and to evaluate the relative severity of COVID-19 in hospitalized patients across Omicron BA.1, BA.2 or BA.2.12.1, and BA.4 or BA.5 sublineage periods. Design, Setting, and Participants: This test-negative case-control study was conducted in 10 states with data from emergency department (ED) and urgent care (UC) encounters and hospitalizations from December 16, 2021, to August 20, 2022. Participants included adults with COVID-19-like illness and molecular testing for SARS-CoV-2. Data were analyzed from August 2 to September 21, 2022. Exposures: mRNA COVID-19 vaccination. Main Outcomes and Measures: The outcomes of interest were COVID-19 ED or UC encounters, hospitalizations, and admission to the intensive care unit (ICU) or in-hospital death. VE associated with protection against medically attended COVID-19 was estimated, stratified by care setting and vaccine doses (2, 3, or 4 doses vs 0 doses as the reference group). Among hospitalized patients with COVID-19, demographic and clinical characteristics and in-hospital outcomes were compared across sublineage periods. Results: During the BA.4 and BA.5 predominant period, there were 82 229 eligible ED and UC encounters among patients with COVID-19-like illness (median [IQR] age, 51 [33-70] years; 49 682 [60.4%] female patients), and 19 114 patients (23.2%) had test results positive for SARS-CoV-2; among 21 007 hospitalized patients (median [IQR] age, 71 [58-81] years; 11 209 [53.4%] female patients), 3583 (17.1 %) had test results positive for SARS-CoV-2. Estimated VE against hospitalization was 25% (95% CI, 17%-32%) for receipt of 2 vaccine doses at 150 days or more after receipt, 68% (95% CI, 50%-80%) for a third dose 7 to 119 days after receipt, and 36% (95% CI, 29%-42%) for a third dose 120 days or more (median [IQR], 235 [204-262] days) after receipt. Among patients aged 65 years or older who had received a fourth vaccine dose, VE was 66% (95% CI, 53%-75%) at 7 to 59 days after vaccination and 57% (95% CI, 44%-66%) at 60 days or more (median [IQR], 88 [75-105] days) after vaccination. Among hospitalized patients with COVID-19, ICU admission or in-hospital death occurred in 21.4% of patients during the BA.1 period vs 14.7% during the BA.4 and BA.5 period (standardized mean difference: 0.17). Conclusions and Relevance: In this case-control study of COVID-19 vaccines and illness, VE associated with protection against medically attended COVID-19 illness was lower with increasing time since last dose; estimated VE was higher after receipt of 1 or 2 booster doses compared with a primary series alone.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Female , Middle Aged , Aged , Male , COVID-19/epidemiology , COVID-19/prevention & control , Case-Control Studies , Hospital Mortality , Vaccine Efficacy , SARS-CoV-2 , Vaccination
7.
MMWR Morb Mortal Wkly Rep ; 71(53): 1637-1646, 2023 Mar 17.
Article in English | MEDLINE | ID: covidwho-2283785

ABSTRACT

During June-October 2022, the SARS-CoV-2 Omicron BA.5 sublineage accounted for most of the sequenced viral genomes in the United States, with further Omicron sublineage diversification through November 2022.* Bivalent mRNA vaccines contain an ancestral SARS-CoV-2 strain component plus an updated component of the Omicron BA.4/BA.5 sublineages. On September 1, 2022, a single bivalent booster dose was recommended for adults who had completed a primary vaccination series (with or without subsequent booster doses), with the last dose administered ≥2 months earlier (1). During September 13-November 18, the VISION Network evaluated vaccine effectiveness (VE) of a bivalent mRNA booster dose (after 2, 3, or 4 monovalent doses) compared with 1) no previous vaccination and 2) previous receipt of 2, 3, or 4 monovalent-only mRNA vaccine doses, among immunocompetent adults aged ≥18 years with an emergency department/urgent care (ED/UC) encounter or hospitalization for a COVID-19-like illness.† VE of a bivalent booster dose (after 2, 3, or 4 monovalent doses) against COVID-19-associated ED/UC encounters was 56% compared with no vaccination, 32% compared with monovalent vaccination only with last dose 2-4 months earlier, and 50% compared with monovalent vaccination only with last dose ≥11 months earlier. VE of a bivalent booster dose (after 2, 3, or 4 monovalent doses) against COVID-19-associated hospitalizations was 59% compared with no vaccination, 42% compared with monovalent vaccination only with last dose 5-7 months earlier, and 48% compared with monovalent vaccination only with last dose ≥11 months earlier. Bivalent vaccines administered after 2, 3, or 4 monovalent doses were effective in preventing medically attended COVID-19 compared with no vaccination and provided additional protection compared with past monovalent vaccination only, with relative protection increasing with time since receipt of the last monovalent dose. All eligible persons should stay up to date with recommended COVID-19 vaccinations, including receiving a bivalent booster dose. Persons should also consider taking additional precautions to avoid respiratory illness this winter season, such as masking in public indoor spaces, especially in areas where COVID-19 community levels are high.


Subject(s)
COVID-19 , Humans , Adult , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Vaccine Efficacy , Emergency Service, Hospital , Hospitalization , RNA, Messenger , Vaccines, Combined
8.
J Infect Dis ; 227(12): 1348-1363, 2023 06 15.
Article in English | MEDLINE | ID: covidwho-2252865

ABSTRACT

BACKGROUND: Data assessing protection conferred from COVID-19 mRNA vaccination and/or prior SARS-CoV-2 infection during Delta and Omicron predominance periods in the United States are limited. METHODS: This cohort study included persons ≥18 years who had ≥1 health care encounter across 4 health systems and had been tested for SARS-CoV-2 before 26 August 2021. COVID-19 mRNA vaccination and prior SARS-CoV-2 infection defined the exposure. Cox regression estimated hazard ratios (HRs) for the Delta and Omicron periods; protection was calculated as (1-HR)×100%. RESULTS: Compared to unvaccinated and previously uninfected persons, during Delta predominance, protection against COVID-19-associated hospitalizations was high for those 2- or 3-dose vaccinated and previously infected, 3-dose vaccinated alone, and prior infection alone (range, 91%-97%, with overlapping 95% confidence intervals [CIs]); during Omicron predominance, estimates were lower (range, 77%-90%). Protection against COVID-19-associated emergency department/urgent care (ED/UC) encounters during Delta predominance was high for those exposure groups (range, 86%-93%); during Omicron predominance, protection remained high for those 3-dose vaccinated with or without a prior infection (76%; 95% CI = 67%-83% and 71%; 95% CI = 67%-73%, respectively). CONCLUSIONS: COVID-19 mRNA vaccination and/or prior SARS-CoV-2 infection provided protection against COVID-19-associated hospitalizations and ED/UC encounters regardless of variant. Staying up-to-date with COVID-19 vaccination still provides protection against severe COVID-19 disease, regardless of prior infection.


Subject(s)
COVID-19 , Humans , Adult , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , COVID-19 Vaccines , Cohort Studies , Vaccination , RNA, Messenger/genetics
9.
J Am Med Inform Assoc ; 2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2236048

ABSTRACT

OBJECTIVE: To identify and characterize clinical subgroups of hospitalized COVID-19 patients. MATERIALS AND METHODS: Electronic health records of hospitalized COVID-19 patients at NewYork-Presbyterian/Columbia University Irving Medical Center were temporally sequenced and transformed into patient vector representations using Paragraph Vector models. K-means clustering was performed to identify subgroups. RESULTS: A diverse cohort of 11,313 patients with COVID-19 and hospitalizations between March 2, 2020 and December 1, 2021 were identified; median [IQR] age: 61.2 [40.3-74.3]; 51.5% female. Twenty subgroups of hospitalized COVID-19 patients, labeled by increasing severity, were characterized by their demographics, conditions, outcomes, and severity (mild-moderate/severe/critical). Subgroup temporal patterns were characterized by the durations in each subgroup, transitions between subgroups, and the complete paths throughout the course of hospitalization. DISCUSSION: Several subgroups had mild-moderate SARS-CoV-2 infections but were hospitalized for underlying conditions (pregnancy, cardiovascular disease (CVD), etc.). Subgroup 7 included solid organ transplant recipients who mostly developed mild-moderate or severe disease. Subgroup 9 had a history of type-2 diabetes, kidney and CVD, and suffered the highest rates of heart failure (45.2%) and end-stage renal disease (80.6%). Subgroup 13 was the oldest (median: 82.7 years) and had mixed severity but high mortality (33.3%). Subgroup 17 had critical disease and the highest mortality (64.6%), with age (median: 68.1 years) being the only notable risk factor. Subgroups 18-20 had critical disease with high complication rates and long hospitalizations (median: 40+ days). All subgroups are detailed in the full text. A chord diagram depicts the most common transitions, and paths with the highest prevalence, longest hospitalizations, lowest and highest mortalities are presented. Understanding these subgroups and their pathways may aid clinicians in their decisions for better management and earlier intervention for patients.

10.
J Infect Dis ; 228(2): 185-195, 2023 Jul 14.
Article in English | MEDLINE | ID: covidwho-2212818

ABSTRACT

BACKGROUND: Following historically low influenza activity during the 2020-2021 season, the United States saw an increase in influenza circulating during the 2021-2022 season. Most viruses belonged to the influenza A(H3N2) 3C.2a1b 2a.2 subclade. METHODS: We conducted a test-negative case-control analysis among adults ≥18 years of age at 3 sites within the VISION Network. Encounters included emergency department/urgent care (ED/UC) visits or hospitalizations with ≥1 acute respiratory illness (ARI) discharge diagnosis codes and molecular testing for influenza. Vaccine effectiveness (VE) was calculated by comparing the odds of influenza vaccination ≥14 days before the encounter date between influenza-positive cases (type A) and influenza-negative and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative controls, applying inverse probability-to-be-vaccinated weights, and adjusting for confounders. RESULTS: In total, 86 732 ED/UC ARI-associated encounters (7696 [9%] cases) and 16 805 hospitalized ARI-associated encounters (649 [4%] cases) were included. VE against influenza-associated ED/UC encounters was 25% (95% confidence interval (CI), 20%-29%) and 25% (95% CI, 11%-37%) against influenza-associated hospitalizations. VE against ED/UC encounters was lower in adults ≥65 years of age (7%; 95% CI, -5% to 17%) or with immunocompromising conditions (4%; 95% CI, -45% to 36%). CONCLUSIONS: During an influenza A(H3N2)-predominant influenza season, modest VE was observed. These findings highlight the need for improved vaccines, particularly for A(H3N2) viruses that are historically associated with lower VE.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Humans , United States/epidemiology , Child, Preschool , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Seasons , Vaccine Efficacy , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Emergency Service, Hospital , Ambulatory Care , Hospitals , Case-Control Studies
11.
Cancer Epidemiol Biomarkers Prev ; 30(10): 1884-1894, 2021 10.
Article in English | MEDLINE | ID: covidwho-2194255

ABSTRACT

BACKGROUND: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. METHODS: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. RESULTS: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%-18% and 1%-14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin's lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n = 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. CONCLUSIONS: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. IMPACT: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.


Subject(s)
COVID-19/mortality , Neoplasms/epidemiology , Outcome Assessment, Health Care/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Comorbidity , Databases, Factual , Female , Hospitalization/statistics & numerical data , Humans , Immunosuppression Therapy/adverse effects , Influenza, Human/epidemiology , Male , Middle Aged , Pandemics , Prevalence , Risk Factors , SARS-CoV-2 , Spain/epidemiology , United States/epidemiology , Young Adult
12.
MMWR Morb Mortal Wkly Rep ; 71(5152): 1616-1624, 2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2204207

ABSTRACT

During June-October 2022, the SARS-CoV-2 Omicron BA.5 sublineage accounted for most of the sequenced viral genomes in the United States, with further Omicron sublineage diversification through November 2022.* Bivalent mRNA vaccines contain an ancestral SARS-CoV-2 strain component plus an updated component of the Omicron BA.4/BA.5 sublineages. On September 1, 2022, a single bivalent booster dose was recommended for adults who had completed a primary vaccination series (with or without subsequent booster doses), with the last dose administered ≥2 months earlier (1). During September 13-November 18, the VISION Network evaluated vaccine effectiveness (VE) of a bivalent mRNA booster dose (after 2, 3, or 4 monovalent doses) compared with 1) no previous vaccination and 2) previous receipt of 2, 3, or 4 monovalent-only mRNA vaccine doses, among immunocompetent adults aged ≥18 years with an emergency department/urgent care (ED/UC) encounter or hospitalization for a COVID-19-like illness.† VE of a bivalent booster dose (after 2, 3, or 4 monovalent doses) against COVID-19-associated ED/UC encounters was 56% compared with no vaccination, 31% compared with monovalent vaccination only with last dose 2-4 months earlier, and 50% compared with monovalent vaccination only with last dose ≥11 months earlier. VE of a bivalent booster dose (after 2, 3, or 4 monovalent doses) against COVID-19-associated hospitalizations was 57% compared with no vaccination, 38% compared with monovalent vaccination only with last dose 5-7 months earlier, and 45% compared with monovalent vaccination only with last dose ≥11 months earlier. Bivalent vaccines administered after 2, 3, or 4 monovalent doses were effective in preventing medically attended COVID-19 compared with no vaccination and provided additional protection compared with past monovalent vaccination only, with relative protection increasing with time since receipt of the last monovalent dose. All eligible persons should stay up to date with recommended COVID-19 vaccinations, including receiving a bivalent booster dose. Persons should also consider taking additional precautions to avoid respiratory illness this winter season, such as masking in public indoor spaces, especially in areas where COVID-19 community levels are high.


Subject(s)
COVID-19 , Humans , Adult , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Vaccine Efficacy , Emergency Service, Hospital , Hospitalization , RNA, Messenger , Vaccines, Combined
13.
MMWR Morb Mortal Wkly Rep ; 71(42): 1335-1342, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2081113

ABSTRACT

Persons with moderate-to-severe immunocompromising conditions might have reduced protection after COVID-19 vaccination, compared with persons without immunocompromising conditions (1-3). On August 13, 2021, the Advisory Committee on Immunization Practices (ACIP) recommended that adults with immunocompromising conditions receive an expanded primary series of 3 doses of an mRNA COVID-19 vaccine. ACIP followed with recommendations on September 23, 2021, for a fourth (booster) dose and on September 1, 2022, for a new bivalent mRNA COVID-19 vaccine booster dose, containing components of the BA.4 and BA.5 sublineages of the Omicron (B.1.1.529) variant (4). Data on vaccine effectiveness (VE) of monovalent COVID-19 vaccines among persons with immunocompromising conditions since the emergence of the Omicron variant in December 2021 are limited. In the multistate VISION Network,§ monovalent 2-, 3-, and 4-dose mRNA VE against COVID-19-related hospitalization were estimated among adults with immunocompromising conditions¶ hospitalized with COVID-19-like illness,** using a test-negative design comparing odds of previous vaccination among persons with a positive or negative molecular test result (case-patients and control-patients) for SARS-CoV-2 (the virus that causes COVID-19). During December 16, 2021-August 20, 2022, among SARS-CoV-2 test-positive case-patients, 1,815 (36.3%), 1,387 (27.7%), 1,552 (31.0%), and 251 (5.0%) received 0, 2, 3, and 4 mRNA COVID-19 vaccine doses, respectively. Among test-negative control-patients during this period, 6,928 (23.7%), 7,411 (25.4%), 12,734 (43.6%), and 2,142 (7.3%) received these respective doses. Overall, VE against COVID-19-related hospitalization among adults with immunocompromising conditions hospitalized for COVID-like illness during Omicron predominance was 36% ≥14 days after dose 2, 69% 7-89 days after dose 3, and 44% ≥90 days after dose 3. Restricting the analysis to later periods when Omicron sublineages BA.2/BA.2.12.1 and BA.4/BA.5 were predominant and 3-dose recipients were eligible to receive a fourth dose, VE was 32% ≥90 days after dose 3 and 43% ≥7 days after dose 4. Protection offered by vaccination among persons with immunocompromising conditions during Omicron predominance was moderate even after a 3-dose monovalent primary series or booster dose. Given the incomplete protection against hospitalization afforded by monovalent COVID-19 vaccines, persons with immunocompromising conditions might benefit from updated bivalent vaccine booster doses that target recently circulating Omicron sublineages, in line with ACIP recommendations. Further, additional protective recommendations for persons with immunocompromising conditions, including the use of prophylactic antibody therapy, early access to and use of antivirals, and enhanced nonpharmaceutical interventions such as well-fitting masks or respirators, should also be considered.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Antiviral Agents , Hospitalization , Vaccines, Combined , RNA, Messenger
14.
BMJ ; 379: e072141, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2053175

ABSTRACT

OBJECTIVE: To estimate the effectiveness of mRNA vaccines against moderate and severe covid-19 in adults by time since second, third, or fourth doses, and by age and immunocompromised status. DESIGN: Test negative case-control study. SETTING: Hospitals, emergency departments, and urgent care clinics in 10 US states, 17 January 2021 to 12 July 2022. PARTICIPANTS: 893 461 adults (≥18 years) admitted to one of 261 hospitals or to one of 272 emergency department or 119 urgent care centers for covid-like illness tested for SARS-CoV-2. MAIN OUTCOME MEASURES: The main outcome was waning of vaccine effectiveness with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine during the omicron and delta periods, and the period before delta was dominant using logistic regression conditioned on calendar week and geographic area while adjusting for age, race, ethnicity, local virus circulation, immunocompromised status, and likelihood of being vaccinated. RESULTS: 45 903 people admitted to hospital with covid-19 (cases) were compared with 213 103 people with covid-like illness who tested negative for SARS-CoV-2 (controls), and 103 287 people admitted to emergency department or urgent care with covid-19 (cases) were compared with 531 168 people with covid-like illness who tested negative for SARS-CoV-2. In the omicron period, vaccine effectiveness against covid-19 requiring admission to hospital was 89% (95% confidence interval 88% to 90%) within two months after dose 3 but waned to 66% (63% to 68%) by four to five months. Vaccine effectiveness of three doses against emergency department or urgent care visits was 83% (82% to 84%) initially but waned to 46% (44% to 49%) by four to five months. Waning was evident in all subgroups, including young adults and individuals who were not immunocompromised; although waning was morein people who were immunocompromised. Vaccine effectiveness increased among most groups after a fourth dose in whom this booster was recommended. CONCLUSIONS: Effectiveness of mRNA vaccines against moderate and severe covid-19 waned with time after vaccination. The findings support recommendations for a booster dose after a primary series and consideration of additional booster doses.


Subject(s)
COVID-19 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Case-Control Studies , Humans , SARS-CoV-2 , Vaccine Efficacy , Young Adult
15.
JAMA Netw Open ; 5(9): e2233273, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-2047371

ABSTRACT

Importance: Pregnant people are at high risk for severe COVID-19 but were excluded from mRNA vaccine trials; data on COVID-19 vaccine effectiveness (VE) are needed. Objective: To evaluate the estimated effectiveness of mRNA vaccination against medically attended COVID-19 among pregnant people during Delta and Omicron predominance. Design, Setting, and Participants: This test-negative, case-control study was conducted from June 2021 to June 2022 in a network of 306 hospitals and 164 emergency department and urgent care (ED/UC) facilities across 10 US states, including 4517 ED/UC encounters and 975 hospitalizations among pregnant people with COVID-19-like illness (CLI) who underwent SARS-CoV-2 molecular testing. Exposures: Two doses (14-149 and ≥150 days prior) and 3 doses (7-119 and ≥120 days prior) of COVID-19 mRNA vaccine (≥1 dose received during pregnancy) vs unvaccinated. Main Outcomes and Measures: Estimated VE against laboratory-confirmed COVID-19-associated ED/UC encounter or hospitalization, based on the adjusted odds ratio (aOR) for prior vaccination; VE was calculated as (1 - aOR) × 100%. Results: Among 4517 eligible CLI-associated ED/UC encounters and 975 hospitalizations, 885 (19.6%) and 334 (34.3%) were SARS-CoV-2 positive, respectively; the median (IQR) patient age was 28 (24-32) years and 31 (26-35) years, 537 (12.0%) and 118 (12.0%) were non-Hispanic Black and 1189 (26.0%) and 240 (25.0%) were Hispanic. During Delta predominance, the estimated VE against COVID-19-associated ED/UC encounters was 84% (95% CI, 69% to 92%) for 2 doses within 14 to 149 days, 75% (95% CI, 5% to 93%) for 2 doses 150 or more days prior, and 81% (95% CI, 30% to 95%) for 3 doses 7 to 119 days prior; estimated VE against COVID-19-associated hospitalization was 99% (95% CI, 96% to 100%), 96% (95% CI, 86% to 99%), and 97% (95% CI, 79% to 100%), respectively. During Omicron predominance, for ED/UC encounters, the estimated VE of 2 doses within 14 to 149 days, 2 doses 150 or more days, 3 doses within 7 to 119 days, and 3 doses 120 or more days prior was 3% (95% CI, -49% to 37%), 42% (95% CI, -16% to 72%), 79% (95% CI, 59% to 89%), and -124% (95% CI, -414% to 2%), respectively; for hospitalization, estimated VE was 86% (95% CI, 41% to 97%), 64% (95% CI, -102% to 93%), 86% (95% CI, 28% to 97%), and -53% (95% CI, -1254% to 83%), respectively. Conclusions and Relevance: In this study, maternal mRNA COVID-19 vaccination, including booster dose, was associated with protection against medically attended COVID-19. VE estimates were higher against COVID-19-associated hospitalization than ED/UC visits and lower against the Omicron variant than the Delta variant. Protection waned over time, particularly during Omicron predominance.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Pregnancy Complications, Infectious , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Female , Humans , Influenza, Human/prevention & control , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/prevention & control , RNA, Messenger, Stored , SARS-CoV-2/genetics , United States/epidemiology , Vaccines, Synthetic , mRNA Vaccines
16.
MMWR Morb Mortal Wkly Rep ; 71(29): 931-939, 2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-1955144

ABSTRACT

The Omicron variant (B.1.1.529) of SARS-CoV-2, the virus that causes COVID-19, was first identified in the United States in November 2021, with the BA.1 sublineage (including BA.1.1) causing the largest surge in COVID-19 cases to date. Omicron sublineages BA.2 and BA.2.12.1 emerged later and by late April 2022, accounted for most cases.* Estimates of COVID-19 vaccine effectiveness (VE) can be reduced by newly emerging variants or sublineages that evade vaccine-induced immunity (1), protection from previous SARS-CoV-2 infection in unvaccinated persons (2), or increasing time since vaccination (3). Real-world data comparing VE during the periods when the BA.1 and BA.2/BA.2.12.1 predominated (BA.1 period and BA.2/BA.2.12.1 period, respectively) are limited. The VISION network† examined 214,487 emergency department/urgent care (ED/UC) visits and 58,782 hospitalizations with a COVID-19-like illness§ diagnosis among 10 states during December 18, 2021-June 10, 2022, to evaluate VE of 2, 3, and 4 doses of mRNA COVID-19 vaccines (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) compared with no vaccination among adults without immunocompromising conditions. VE against COVID-19-associated hospitalization 7-119 days and ≥120 days after receipt of dose 3 was 92% (95% CI = 91%-93%) and 85% (95% CI = 81%-89%), respectively, during the BA.1 period, compared with 69% (95% CI = 58%-76%) and 52% (95% CI = 44%-59%), respectively, during the BA.2/BA.2.12.1 period. Patterns were similar for ED/UC encounters. Among adults aged ≥50 years, VE against COVID-19-associated hospitalization ≥120 days after receipt of dose 3 was 55% (95% CI = 46%-62%) and ≥7 days (median = 27 days) after a fourth dose was 80% (95% CI = 71%-85%) during BA.2/BA.2.12.1 predominance. Immunocompetent persons should receive recommended COVID-19 booster doses to prevent moderate to severe COVID-19, including a first booster dose for all eligible persons and second booster dose for adults aged ≥50 years at least 4 months after an initial booster dose. Booster doses should be obtained immediately when persons become eligible.¶.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Adult , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , United States/epidemiology , Vaccines, Synthetic , mRNA Vaccines
17.
JMIR Public Health Surveill ; 8(5): e35311, 2022 05 24.
Article in English | MEDLINE | ID: covidwho-1862504

ABSTRACT

BACKGROUND: COVID-19 messenger RNA (mRNA) vaccines have demonstrated efficacy and effectiveness in preventing symptomatic COVID-19, while being relatively safe in trial studies. However, vaccine breakthrough infections have been reported. OBJECTIVE: This study aims to identify risk factors associated with COVID-19 breakthrough infections among fully mRNA-vaccinated individuals. METHODS: We conducted a series of observational retrospective analyses using the electronic health records (EHRs) of the Columbia University Irving Medical Center/New York Presbyterian (CUIMC/NYP) up to September 21, 2021. New York City (NYC) adult residences with at least 1 polymerase chain reaction (PCR) record were included in this analysis. Poisson regression was performed to assess the association between the breakthrough infection rate in vaccinated individuals and multiple risk factors-including vaccine brand, demographics, and underlying conditions-while adjusting for calendar month, prior number of visits, and observational days in the EHR. RESULTS: The overall estimated breakthrough infection rate was 0.16 (95% CI 0.14-0.18). Individuals who were vaccinated with Pfizer/BNT162b2 (incidence rate ratio [IRR] against Moderna/mRNA-1273=1.66, 95% CI 1.17-2.35) were male (IRR against female=1.47, 95% CI 1.11-1.94) and had compromised immune systems (IRR=1.48, 95% CI 1.09-2.00) were at the highest risk for breakthrough infections. Among all underlying conditions, those with primary immunodeficiency, a history of organ transplant, an active tumor, use of immunosuppressant medications, or Alzheimer disease were at the highest risk. CONCLUSIONS: Although we found both mRNA vaccines were effective, Moderna/mRNA-1273 had a lower incidence rate of breakthrough infections. Immunocompromised and male individuals were among the highest risk groups experiencing breakthrough infections. Given the rapidly changing nature of the SARS-CoV-2 pandemic, continued monitoring and a generalizable analysis pipeline are warranted to inform quick updates on vaccine effectiveness in real time.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Adult , BNT162 Vaccine/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , Female , Humans , Male , New York City/epidemiology , Retrospective Studies , Risk Factors
18.
MMWR Morb Mortal Wkly Rep ; 71(13): 495-502, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1771891

ABSTRACT

CDC recommends that all persons aged ≥18 years receive a single COVID-19 vaccine booster dose ≥2 months after receipt of an Ad.26.COV2.S (Janssen [Johnson & Johnson]) adenovirus vector-based primary series vaccine; a heterologous COVID-19 mRNA vaccine is preferred over a homologous (matching) Janssen vaccine for booster vaccination. This recommendation was made in light of the risks for rare but serious adverse events following receipt of a Janssen vaccine, including thrombosis with thrombocytopenia syndrome and Guillain-Barré syndrome† (1), and clinical trial data indicating similar or higher neutralizing antibody response following heterologous boosting compared with homologous boosting (2). Data on real-world vaccine effectiveness (VE) of different booster strategies following a primary Janssen vaccine dose are limited, particularly during the period of Omicron variant predominance. The VISION Network§ determined real-world VE of 1 Janssen vaccine dose and 2 alternative booster dose strategies: 1) a homologous booster (i.e., 2 Janssen doses) and 2) a heterologous mRNA booster (i.e., 1 Janssen dose/1 mRNA dose). In addition, VE of these booster strategies was compared with VE of a homologous booster following mRNA primary series vaccination (i.e., 3 mRNA doses). The study examined 80,287 emergency department/urgent care (ED/UC) visits¶ and 25,244 hospitalizations across 10 states during December 16, 2021-March 7, 2022, when Omicron was the predominant circulating variant.** VE against laboratory-confirmed COVID-19-associated ED/UC encounters was 24% after 1 Janssen dose, 54% after 2 Janssen doses, 79% after 1 Janssen/1 mRNA dose, and 83% after 3 mRNA doses. VE for the same vaccination strategies against laboratory-confirmed COVID-19-associated hospitalizations were 31%, 67%, 78%, and 90%, respectively. All booster strategies provided higher protection than a single Janssen dose against ED/UC visits and hospitalizations during Omicron variant predominance. Vaccination with 1 Janssen/1 mRNA dose provided higher protection than did 2 Janssen doses against COVID-19-associated ED/UC visits and was comparable to protection provided by 3 mRNA doses during the first 120 days after a booster dose. However, 3 mRNA doses provided higher protection against COVID-19-associated hospitalizations than did other booster strategies during the same time interval since booster dose. All adults who have received mRNA vaccines for their COVID-19 primary series vaccination should receive an mRNA booster dose when eligible. Adults who received a primary Janssen vaccine dose should preferentially receive a heterologous mRNA vaccine booster dose ≥2 months later, or a homologous Janssen vaccine booster dose if mRNA vaccine is contraindicated or unavailable. Further investigation of the durability of protection afforded by different booster strategies is warranted.


Subject(s)
COVID-19 , Influenza Vaccines , Adolescent , Adult , Ambulatory Care , COVID-19/prevention & control , COVID-19 Vaccines , Emergency Service, Hospital , Hospitalization , Humans , Immunization, Secondary , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
19.
Clin Epidemiol ; 14: 369-384, 2022.
Article in English | MEDLINE | ID: covidwho-1760056

ABSTRACT

Purpose: Routinely collected real world data (RWD) have great utility in aiding the novel coronavirus disease (COVID-19) pandemic response. Here we present the international Observational Health Data Sciences and Informatics (OHDSI) Characterizing Health Associated Risks and Your Baseline Disease In SARS-COV-2 (CHARYBDIS) framework for standardisation and analysis of COVID-19 RWD. Patients and Methods: We conducted a descriptive retrospective database study using a federated network of data partners in the United States, Europe (the Netherlands, Spain, the UK, Germany, France and Italy) and Asia (South Korea and China). The study protocol and analytical package were released on 11th June 2020 and are iteratively updated via GitHub. We identified three non-mutually exclusive cohorts of 4,537,153 individuals with a clinical COVID-19 diagnosis or positive test, 886,193 hospitalized with COVID-19, and 113,627 hospitalized with COVID-19 requiring intensive services. Results: We aggregated over 22,000 unique characteristics describing patients with COVID-19. All comorbidities, symptoms, medications, and outcomes are described by cohort in aggregate counts and are readily available online. Globally, we observed similarities in the USA and Europe: more women diagnosed than men but more men hospitalized than women, most diagnosed cases between 25 and 60 years of age versus most hospitalized cases between 60 and 80 years of age. South Korea differed with more women than men hospitalized. Common comorbidities included type 2 diabetes, hypertension, chronic kidney disease and heart disease. Common presenting symptoms were dyspnea, cough and fever. Symptom data availability was more common in hospitalized cohorts than diagnosed. Conclusion: We constructed a global, multi-centre view to describe trends in COVID-19 progression, management and evolution over time. By characterising baseline variability in patients and geography, our work provides critical context that may otherwise be misconstrued as data quality issues. This is important as we perform studies on adverse events of special interest in COVID-19 vaccine surveillance.

20.
MMWR Morb Mortal Wkly Rep ; 71(9): 352-358, 2022 Mar 04.
Article in English | MEDLINE | ID: covidwho-1727017

ABSTRACT

The efficacy of the BNT162b2 (Pfizer-BioNTech) vaccine against laboratory-confirmed COVID-19 exceeded 90% in clinical trials that included children and adolescents aged 5-11, 12-15, and 16-17 years (1-3). Limited real-world data on 2-dose mRNA vaccine effectiveness (VE) in persons aged 12-17 years (referred to as adolescents in this report) have also indicated high levels of protection against SARS-CoV-2 (the virus that causes COVID-19) infection and COVID-19-associated hospitalization (4-6); however, data on VE against the SARS-CoV-2 B.1.1.529 (Omicron) variant and duration of protection are limited. Pfizer-BioNTech VE data are not available for children aged 5-11 years. In partnership with CDC, the VISION Network* examined 39,217 emergency department (ED) and urgent care (UC) encounters and 1,699 hospitalizations† among persons aged 5-17 years with COVID-19-like illness across 10 states during April 9, 2021-January 29, 2022,§ to estimate VE using a case-control test-negative design. Among children aged 5-11 years, VE against laboratory-confirmed COVID-19-associated ED and UC encounters 14-67 days after dose 2 (the longest interval after dose 2 in this age group) was 46%. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 83% and 76%, respectively; VE ≥150 days after dose 2 was 38% and 46%, respectively. Among adolescents aged 16-17 years, VE increased to 86% ≥7 days after dose 3 (booster dose). VE against COVID-19-associated ED and UC encounters was substantially lower during the Omicron predominant period than the B.1.617.2 (Delta) predominant period among adolescents aged 12-17 years, with no significant protection ≥150 days after dose 2 during Omicron predominance. However, in adolescents aged 16-17 years, VE during the Omicron predominant period increased to 81% ≥7 days after a third booster dose. During the full study period, including pre-Delta, Delta, and Omicron predominant periods, VE against laboratory-confirmed COVID-19-associated hospitalization among children aged 5-11 years was 74% 14-67 days after dose 2, with wide CIs that included zero. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 92% and 94%, respectively; VE ≥150 days after dose 2 was 73% and 88%, respectively. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations, including a booster dose for those aged 12-17 years.


Subject(s)
BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccine Efficacy/statistics & numerical data , Adolescent , Ambulatory Care/statistics & numerical data , Child , Child, Preschool , Emergency Service, Hospital/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary , Male , United States
SELECTION OF CITATIONS
SEARCH DETAIL